1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
trinidadhinkle edited this page 2025-03-01 05:03:39 +08:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, together with the distilled versions ranging from 1.5 to 70 billion parameters to construct, experiment, and properly scale your generative AI concepts on AWS.

In this post, we demonstrate how to get begun with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to deploy the distilled versions of the models as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language design (LLM) established by DeepSeek AI that uses reinforcement discovering to improve thinking abilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A key differentiating function is its reinforcement knowing (RL) step, which was used to fine-tune the design's responses beyond the standard pre-training and tweak process. By integrating RL, DeepSeek-R1 can adjust better to user feedback and goals, eventually enhancing both significance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) method, suggesting it's geared up to break down complex inquiries and factor through them in a detailed manner. This assisted thinking procedure allows the design to produce more accurate, transparent, and detailed responses. This design combines RL-based fine-tuning with CoT abilities, aiming to produce structured responses while focusing on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has actually recorded the industry's attention as a versatile text-generation design that can be integrated into different workflows such as representatives, logical reasoning and information interpretation jobs.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture permits activation of 37 billion specifications, allowing efficient reasoning by routing queries to the most pertinent professional "clusters." This technique allows the design to specialize in different issue domains while maintaining total efficiency. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to release the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning abilities of the main R1 model to more efficient architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller, more efficient models to imitate the behavior and thinking patterns of the larger DeepSeek-R1 design, utilizing it as a teacher model.

You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we advise releasing this model with guardrails in location. In this blog site, we will use Guardrails to introduce safeguards, avoid damaging content, and assess models against crucial safety requirements. At the time of composing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce numerous guardrails tailored to various use cases and use them to the DeepSeek-R1 model, enhancing user experiences and standardizing security controls throughout your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you require access to an ml.p5e circumstances. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To ask for a limitation increase, create a limit increase demand and connect to your account team.

Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) authorizations to utilize Amazon Bedrock Guardrails. For guidelines, see Establish consents to utilize guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to introduce safeguards, avoid damaging material, wiki-tb-service.com and assess models against key safety requirements. You can execute safety procedures for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to evaluate user inputs and design responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The basic flow includes the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for inference. After receiving the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the final result. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following sections demonstrate reasoning utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, select Model catalog under Foundation models in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to conjure up the design. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a service provider and choose the DeepSeek-R1 model.

The design detail page provides necessary details about the design's abilities, pricing structure, and execution guidelines. You can discover detailed use directions, consisting of sample API calls and code snippets for integration. The model supports different text generation jobs, including content production, code generation, and concern answering, using its support discovering optimization and CoT reasoning abilities. The page also includes deployment options and licensing details to help you begin with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, select Deploy.

You will be triggered to set up the release details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters). 5. For Variety of instances, enter a variety of instances (in between 1-100). 6. For Instance type, pick your instance type. For optimal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is suggested. Optionally, you can set up innovative security and facilities settings, consisting of virtual private cloud (VPC) networking, service role consents, and file encryption settings. For a lot of utilize cases, setiathome.berkeley.edu the default settings will work well. However, for production implementations, you might want to review these settings to line up with your organization's security and compliance requirements. 7. Choose Deploy to start using the model.

When the implementation is complete, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground. 8. Choose Open in play ground to access an interactive interface where you can explore various triggers and change design criteria like temperature level and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimal results. For example, content for inference.

This is an excellent method to check out the model's reasoning and text generation abilities before incorporating it into your applications. The play area supplies immediate feedback, helping you understand how the model responds to various inputs and letting you tweak your triggers for optimal results.

You can rapidly evaluate the model in the playground through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to carry out inference using a released DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually created the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime customer, sets up inference specifications, and sends a request to create text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML options that you can deploy with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your information, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart offers 2 convenient methods: utilizing the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both techniques to assist you choose the method that best matches your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be prompted to develop a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The design internet browser displays available designs, with details like the supplier name and model capabilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card. Each model card reveals crucial details, consisting of:

- Model name

  • Provider name
  • Task classification (for example, Text Generation). Bedrock Ready badge (if relevant), showing that this model can be signed up with Amazon Bedrock, enabling you to utilize Amazon Bedrock APIs to conjure up the design

    5. Choose the model card to see the model details page.

    The model details page includes the following details:

    - The design name and supplier details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab consists of important details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage guidelines

    Before you deploy the design, it's recommended to evaluate the model details and license terms to verify compatibility with your usage case.

    6. Choose Deploy to continue with release.

    7. For Endpoint name, use the automatically produced name or develop a customized one.
  1. For example type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, get in the variety of circumstances (default: 1). Selecting suitable circumstances types and counts is important for expense and efficiency optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time inference is selected by default. This is enhanced for sustained traffic and low latency.
  3. Review all configurations for precision. For this design, we highly recommend sticking to SageMaker JumpStart default settings and making certain that network isolation remains in place.
  4. Choose Deploy to deploy the model.

    The deployment process can take numerous minutes to complete.

    When implementation is total, your endpoint status will change to InService. At this point, the model is all set to accept inference demands through the endpoint. You can monitor the implementation development on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the implementation is complete, you can invoke the design utilizing a SageMaker runtime customer and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To begin with DeepSeek-R1 using the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the necessary AWS approvals and environment setup. The following is a detailed code example that shows how to deploy and use DeepSeek-R1 for reasoning programmatically. The code for forum.altaycoins.com releasing the model is supplied in the Github here. You can clone the note pad and range from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and implement it as displayed in the following code:

    Clean up

    To avoid undesirable charges, finish the steps in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you deployed the design utilizing Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace implementations.
  5. In the Managed releases area, locate the endpoint you desire to erase.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're deleting the correct release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you deployed will sustain expenses if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business build ingenious options using AWS services and sped up compute. Currently, he is concentrated on developing methods for fine-tuning and optimizing the inference performance of large language designs. In his downtime, Vivek takes pleasure in treking, viewing movies, and attempting various cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads product, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about building options that assist customers accelerate their AI journey and unlock organization worth.